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Execu�ve Summary
The QCIHungary project aims to develop a modularized so�ware product, an encryptor, using the keys distributedover a quantum communica�on infrastructure. This infrastructure is the primary goal of the QCIHungary and theEuroQCI projects.
Quantum key distribu�on (QKD) is a method of secret key exchange between two distant par�cipants, Alice andBob. The laws of quantum mechanics guarantee the security of the distributed keys, which makes eavesdroppingdetectable. This is not possible over classical communica�on channels. The so�ware product presented in thisdeliverable is a separate so�ware that sits on top of the QKD layer. Its purpose is to encrypt messages (and decryptthem later) with addi�onal keys generated using post-quantum cryptographic algorithms. To enhance security,our so�ware product establishes an authen�cated (classical) channel between the sender and the receiver of the(encrypted) message.
Our encryptor so�ware can interact with various standard security services, for example, MACSec, IPsec, TLS,etc., which sits between the QKD layer and an arbitrary applica�on layer, see Figure 2.1. The modularized fashionof the encryptor makes it possible to extend further the list of the available services above for later use.
The modules of the encryptor work together asynchronously in a producer-consumer fashion, which keeps thecomplexity minimal and makes it easy to integrate exis�ng so�ware libraries of tools. Our encryptor consistsof five modules (Figure 3.1). The central part is the Controller, which orchestrates other modules and messagerou�ng. The Encryptor module encrypts (and decrypts) messages, and the Key-Manager provides keys for theEncryptor and informa�on of the Controller. The Tunnel and Facade modules are simply connectors to the outsideworld and implement the necessary interface for communica�on.
The Encryptor module is stateless (Figure 3.2) and consists of other modules. Based on the number of availablekeys in the Key-Manager module and the type of Message, it either encrypts the Message or ini�ates the crea�onof new keys via the Key-Agreement module. These new keys will be stored in one of the Vaults via the Key-Manager.
The Key-Manager is responsible for storing private and public keys and their related informa�on. The Controllermodule can only request public informa�on and receive messages from the Key-Manager. The Encryptor modulecan query public and private keys from the Key-Manager.
We assume that the channel between our encryptor so�ware and the key manager of each QKD device is authen-�cated. We use the ETSI 014 standard [2] for reques�ng keys from the key managers. We have no assump�onsabout the channels between the message sender and receiver.
A�er the authen�ca�on between two encryptor so�ware, the message is sent through an authen�cated channel.Once the channel is authen�cated, any (post-quantum) key exchange happens through this channel. However,the key delivery interface of ETSI 014 standard relies on other communica�on protocols.
In this document, we present a modularized encryptor so�ware solu�on design that uses QKD keys in combi-na�on with post-quantum keys to establish secure message transfer between Alice and Bob. We describe theenvironment and describe each module of the encryptor. Finally, we analyze the security of each module anddiscuss the assump�ons that we make during the development of the so�ware.
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1 Introduc�on
The QCIHungary project aims to establish the founda�ons of a na�onal quantum communica�on infrastructure.The present deliverable is the first product of the work package WP7 ”So�ware stack over a quantum communi-ca�on channel”, which aims to develop a so�ware product using the keys distributed over the infrastructure.
Quantum communica�on is based on Quantum key distribu�on (QKD), which allows two par�cipants to exchangea secret key using a quantum communica�on channel. The security of QKD relies on the hypothesis that the lawsof quantum mechanics bind the informa�on that an eavesdropper might acquire on the key. The eavesdroppermust interact with the quantum system to learn something about the key. This will inevitably disturb the quantumstates that the two par�cipants use, which can be detected.
Since the secret key is ul�mately known by the two par�cipants only, the security of the standardized classicalalgorithms is somewhat enhanced since it relies on the secret key. We aim to exploit this by crea�ng a modularizedso�ware package that uses the secret key distributed by QKD. In this work, we assume that the security of a QKDprotocol is sound and the communica�on channels are authen�cated between the QKD devices and their keymanagers. We also assume that the keys are securely stored in the QKD devices (and in the key managers),meaning only the two par�cipants can know the secret keys.
There are commercially available encryptor solu�ons for similar purposes, e.g. Adva, Thales, and Toshiba, but ourso�ware solu�on could expand these on three points.

1. Adding PQ layer. Most of the commercial solu�ons1 only use the QKD keys and miss the opportunity toenhance the security provided by the recently standardized post-quantum (PQ) key exchange algorithms.In our system, the PQ key adds another encryp�on layer on the message in case the QKD protocol or theinfrastructure gets compromised.
2. Improved key management Based on the used technology, there are restric�ons on the rate QKD key bytescan be generated, which could create problems for some applica�ons where the key genera�on should beon-demand and fast, or the demanded keys are rather long. Our solu�on has an independent Key Managermodule that allows smart key management and simultaneous communica�on with various key storagestandards.
3. Flexibility Our so�ware is a modularized middleware, which creates a so�ware layer where devices fromdifferent vendors and different infrastructures can be used together with minimal effort.

The encryptor so�ware is designed in a modularized fashion. This document will define the modules, specify theirroles, and describe the communica�on between them without the exact interface specifica�on. The encryptorso�ware is a middleware, so we will use the user and user applica�on as synonyms as the outer interfaces notintended to be used by a person directly.
The goal of this deliverable is to present the environment in which the so�ware will be used (Sec�on 2), and thearchitecture (Sec�on 3). Finally, we discuss the security analysis of the so�ware (Sec�on 4).

1There are vendors (for example Nokia) providing solu�ons that are combining PQC and QKD.
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2 Environment
The goal of this work package is to develop a so�ware system that enables applica�ons to use standard securityservices enhanced with modern, QKD-based key exchange. In this sec�on, we enlist external en��es with whichthe developed so�ware system interacts. We do not intend this list, nor the descrip�on of its items to be exhaus-�ve; rather, this sec�on is meant to illustrate the expected requirements for the developed system and to give ahigh-level view of the poten�al use cases of the system.
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Figure 2.1: The system environment in which our encryptor so�ware (Data Encryp�on Middleware) is located.
Figure 2.1 depicts the system environment, with the external so�ware components (including network protocols)with which the Data Encryp�on Subsystem must interact. Arrows show dependencies between the componentsfrom the point of view of an applica�on requiring a secure point-to-point communica�on channel.
The encryptor so�ware – called Data Encryp�on Middleware (DEM) in the figure – can be considered a middle-ware between selected security protocols and the QKD-based Key Distribu�on Subsystem (KDS).
In the figure, our par��oning of the components is conceptual rather than physical. For example, a thin imple-menta�on of the Encryp�on Subsystem may consist strictly of the DEM, making the applica�on responsible forinstan�a�ng the protected communica�on channel and the KDS driver and wiring them with the middleware.Alterna�vely, another Encryp�on Subsystem implementa�on may include the mechanism for instan�a�ng andwiring together the DEM, the communica�on channel, and the KDS driver. We detail the proposed system archi-tecture in Sec�on 3.
WP2 Deliverable 2.1 lists IPsec, MACsec, and in-flight (also known as in-line) encryptor types (security protocols)that the Encryp�on Subsystem should provide. These protocols – described below in more detail – add securityfeatures (e.g. PDU encryp�on) to OSI networking layers. Their standard implementa�ons usually use classical keyexchange protocols (e.g. Diffie-Hellman protocol, in the case of IPsec). In contrast, Deliverable 2.1 specifies thattheir implementa�ons in the Encryp�on Subsystem must use the KDS for key exchange.
WP2 Deliverable 2.1 does not expect changes in other features of the security protocols, such as encryp�on orauthen�ca�on. On the other hand, it may be prac�cal for the Encryp�on Subsystem to support or incorporatesuch security methods as well in order to enable secure communica�on over other insecure protocols (e.g. TCP).
KDS is the physical system implemen�ng QKD and is responsible for genera�ng and exchanging keys. DEM mustbe designed to support accep�ng keys from various drivers (adapters) of QKD hardware. The European Telecom-munica�ons Standards Ins�tute (ETSI) has developed a standard for a key delivery applica�on programming inter-face (API), the ETSI GS QKD 014 standard, for reques�ng a secret key from the QKD hardware. Most commerciallyavailable QKD hardware implements this standard; therefore, our so�ware also uses it.
In the following, we describe our understanding of the encryp�on protocols listed in WP2 Deliverable 2.1. andpropose ways to integrate them with the KDS.
2.1 IPsec
IPsec provides data integrity, authen�ca�on, encryp�on, and more for Layer 3 protocols and above [3]. IPsec canbe used in two modes [4]. In transport mode, only the payload is encrypted and authen�cated. In tunnel mode
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(used e.g. for crea�ng VPNs), the en�re IP packet is encrypted and authen�cated and then encapsulated intoa new IP header. IPsec has several robust, open-source implementa�ons, including LibreSwan, OpenSwan, andStrongSwan (all deriva�ves of the now-defunct FreeSwan project). IPsec allows custom key exchange methods,and we discuss this next.
Architecture

ESP
Protocol

AH
Protocol

Integrity protection
algorithm

IKE
Protocol

Encryption
algorithm

Combined
algorithm

Figure 2.2: “Roadmap” of IPsec standards, based on RFC 6071 [1]
Figure 2.2 depicts the standards specifying IPsec and their dependencies. ESP and AH implement security features,while Key Management is responsible for key exchange mechanisms (algorithms, authen�ca�on, etc.). RFC 2408(historic) specified a protocol for Key Management, called ISAKMP. ISAKMP allowed users to use their own keyexchange protocols, although RFC 2409 (obsolate) also described the IKEv1 protocol for key exchange purposes.RFC 7296 [5] describes IKEv2, the current standard both for management of security associa�ons and for keyexchange, replacing both ISAKMP and IKEv1. IKEv2 has two phases. In the first phase, the hosts establish a securechannel using X.509 PKI cer�ficates or PSKs to authen�cate each other. In the second phase, security associa�onmanagement messages can be exchanged.
In this report, we do not discuss how DEM should interact with concrete implementa�ons of IPsec, but as anexample, user-generated keys can be passed to StrongSwan by se�ng up the /etc/ipsec.conf configura�onfile and including the PSK as plaintext in /etc/ipsec.secret before the secure link is ini�alized.
Based on this, IPsec provides at least two use cases for DEM:

1. Manual keying. DEM can act as the key exchange protocol for a configurable IPsec protocol (such as ISAKMP,in the case of legacy systems). In this case, the keys provided by the KDS are used for security services overIP PDUs in AH and ESP. Two separate keys should be generated: one for authen�ca�on and one for dataencryp�on purposes.
2. Automa�c keying. An IKEv2 daemon can act as the key exchange protocol, while DEM can provide theauthen�ca�on PSKs for IKEv2. Here, the KDS-generated key is used in the first phase of IKE, namely as thePSK used in crea�ng the secure channel. In this case, the QKD-based KDS is only used for sharing PSKs,while the actual key exchange (genera�ng the keys that are securing the channel) is performed by IKE.

2.2 MACsec
MACsec provides data integrity, authen�ca�on, encryp�on, and more (see IEEE 802.1AE [6]) for all protocolsabove Layer 2 (Ethernet), including ARP and DHCP. The MACsec header wraps the payload of an Ethernet frame.Since MACsec also encrypts the IP header, it cannot operate between routers, only between hosts in the sameLAN. At the �me of wri�ng, the only robust, open-source MACsec implementa�on is embedded in the Linuxkernel.
MACsec allows custom key exchange methods, and we discuss this next.
As specified in IEEE 802.1AE, MACsec is only responsible for the above security services, while the key exchange ishandled by the MACsec Key Agreement (MKA) protocol, described in IEEE 802.1X. In the MKA, the user supplies
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a PSK (a pair of two keys called CAK and CKN) to both hosts. The hosts authen�cate each other and share the keyfor encryp�ng the actual traffic (SAK). As part of the process, one of them generates the SAK and then uses a keyexchange protocol (involving the PSK) to share this key with the other host. The MACsec security services thenuse this SAK.
Host Switchencrypted

traffic
kernel

configures

802.1X/MKA

wpa_supplicant

configures

NetworkManager

traffic

MACsec
port

port

port

Figure 2.3: MACsec in Linux
Figure 2.3 depicts the MACsec architecture implemented in Linux.
MACsec (IEEE 802.1AE, without MKA) is implemented inside the Linux kernel and can be accessed using the
iproute2 tool. Using this interface, one can create a MACsec link directly and supply the encryp�on/decryp�onkeys manually (e.g., using the command line). However, the manual explicitly recommends against this:

This tool is thus mostly for debugging and tes�ng, or in combina�on with a user-space applica�onthat reconfigures the keys. It is wrong to just configure the keys sta�cally and assume them to workindefinitely. The suggested and standardized way for key management is 802.1X-2010, which is im-plemented by wpa supplicant.
The decep�vely named wpa supplicant implements MKA (as well as authen�ca�on protocols used by high-level encryptors such as WPA2). It performs the MKA and then instructs the kernel to set up the MACsec link. ThePSK (CKA and CKN) for the MKA can be provided in its configura�on file (wpa supplicant.conf).
Finally, most Linux distribu�ons also include the NetworkManager service unit, which provides a high-level in-terface to create connec�ons. This tool can also set up MACsec with MKA, using the PSK (CKA and CKN) providedby the user (e.g., on the command line, using nmcli). Internally, it relies on wpa supplicant.
Based on this, MACsec provides at least two use cases for DEM:

1. Direct keying. DEM can act as the key exchange protocol for MACsec. In this case, the keys provided by theKDS are used directly for MACsec security services in the Linux kernel.
2. MKA. An MKA agent (e.g. wpa supplicant, NetworkManager) can act as the key exchange protocol forMACsec while DEM can provide the authen�ca�on PSKs for MKA. Here, the KDS-generated key is used forgenera�ng SAKs and exchanging SAKs between hosts. In this case, the QKD-based KDS is only used forsharing PSKs, while the actual key exchange (genera�ng the keys that are actually securing the channel) isperformed by the MKA.

2.3 In-flight
In-flight encryp�on provides security below the L2 layer. Implementa�ons o�en promise addi�onal security fea-tures, such as protec�on against traffic analysis. It is common in op�cal networks, as these are primarily used forhigh-distance connec�ons, where such security features are relevant.
In-flight encryp�on encrypts the Ethernet frame itself that includes network interface iden�fiers (MAC addresses).This means that these PDUs are usually not transferred between Ethernet-capable so�ware or hardware devices(e.g. NICs, switches), instead, the secured link is supposed to lay between special-purpose devices handling en-crypted PDUs.
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As in-flight encryp�on is – by defini�on – outside the tradi�onal network layers, there are no commonly acceptedstandards. Instead, each vendor provides its own proprietary solu�ons, which must be evaluated on a case-by-case basis.
Nonetheless, we expect similar op�ons to those of IPsec and MACsec. For example, WaveLogic Encryp�on byCiena performs first a PSK-based based ITU X.509 based authen�ca�on, which is followed by data encryp�on.Here, DEM may be u�lized to deliver KDS-generated PSKs to the device.
In this report, we do not discuss how DEM should interact with concrete implementa�ons of in-flight encryp�on.S�ll, it seems clear that DEM must be designed to support transmi�ng keys to various drivers (adapters) of in-flight encryptor hardware.

3 Architecture
With the emergence of quantum computers (or at least their promise) and Shor’s algorithm [7], a good part ofour well-established cryptographic tools become obsolete. However, we don’t want to reestablish a completelynew system but use solu�ons that do not compromise security. The rela�vely simple solu�on to accomplish thisis modulariza�on, where the architecture enables to apply widely used IT security standards and tools. Further-more, the addi�onal work to create interfaces pays off in flexibility, which is very important in a research project(like EuroQCI) where mul�ple groups work parallel on similar solu�ons.
3.1 Aim
Our goal in this sec�on is to define the architecture of an applica�on that can be employed on various OSI layers(based on the implemented connector modules2) and can work with exis�ng solu�ons (like post-quantum SSL,key storage, etc.). To achieve this, we outline modules and interfaces between them where each module hasa dis�nc�ve role, while the interfaces are as simple as possible. Here, the modules can be seen as ac�ve en�-�es asynchronously working together in a producer-consumer fashion, which keeps the complexity minimal andmakes easy to create envelop modules for integra�ng exis�ng so�ware libraries or tools.
3.2 Modules
The proposed architecture consists of several modules (see Figure 3.1) which can be organized based on theirconnec�ons and roles. In the middle, the Controller module is responsible for orchestra�ng other modules andfor message rou�ng (including rou�ng to Encryptor). The Tunnel and Facade components are the connectors andimplement the interfaces that communicate with the outside. The stateless Encryptor encrypts messages, whilethe Key-Manager provides keys for the Encryptor and informa�on for the Controller.
3.2.1 Controller
The Controller is the core module of the architecture, and when it starts it

• reads a configura�onal object and, based on that
• starts the other modules3,
• checks the state of the system and
• commences to route the messages between the communica�on modules and the Encryptor.

Note: The Controller is a module and not provides a regular applica�on interface; instead, the module itself shouldbe used or enveloped in an actual applica�on.
2In the case of the Applica�on Layer, the so�ware can behave like a VPN client, providing a socket or network interface as a networktunnel.3The Controller starts the listed submodules like Vaults or Authon�cators too. These modules are passed to their logical parent during theini�aliza�on process.
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Figure 3.1: Modules (green – unique, orange – several instances supported)

3.2.2 Communca�on - Facade and Tunnel
A Facade transfers messages between the Controller and the user, which usually, but not necessarily4, means theFacade provides a standard socket or network interface that the user applica�on can use.
A Tunnel provides a network tunnel for communica�on with other Controllers; in most cases, it connects to asocket or network interface.
The Controller can handle mul�ple instances of Facades and Tunnels. S�ll, from the viewpoint of behavior, aTunnel-Controller-Facade trio is like a pipeline with the Controller in the middle, responsible for securing themessages.
3.2.3 Encryptor
The Encryptor module encapsulates and organizes other cryptographic submodules (see Figure 3.2) to providea stateless module that can secure messages. Based on the Message (maintenance, raw or encrypted) and theavailable keys in the Key-Manager, the Encryptor can decide what to do with the Message. For raw and encryptedmessages, if there is no key available for encryp�on or decryp�on, then the module can ini�ate the crea�on ofnew keys via the Key-Agreement module. The new key will be created by one of the Key-Update modules basedon what type of key was requested; and will be stored in one of the Vaults via the Key-Manager. An authen�catoris responsible for authen�ca�ng messages based on preshared data (stored in KM), which is crucial, for example,if the key-update process require mul�ple authen�cated data transfer.
It’s important to note that the structure of the Encryptor module enables us to use standard encryp�on tools.For example, a new key agreement or authen�ca�on protocol can be added to the system by enveloping it in aKey-Agreement or Authen�ca�on module. Furthermore, if there is a standard, wisely used package like SSL, wecan encapsulate it in an encryptor and use it in our system without changing the other modules.
3.2.4 Key-Manager
The Key-Manager is responsible for storing private (symmetric and asymmetric) and public keys and their relatedinforma�on. As a module, it has two different interfaces. Via the interface between the Controller and the Key-Manager

• the Controller can only query public informa�on,
• the Key-Manager can transfer messages to the Controller, which can be addressed to the user (answer touser query) or to the Tunnel.

4In case, the Controller is part of some special applica�on or network infrastructure, the Facade can play a more specific connector role.
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Figure 3.2: Encryptor modules

The interface between the Encryptor and the Controller is unidirec�onal; the Encryptor can
• query public and private keys,
• store and update keys.

As the Encryptor module is stateless, and the Controller has no control over the encryp�on process, the Key-Manager contains all the security-related data in Vault modules.
3.2.4.1 Vault
The Key Manager does not provide storage; instead, it uses at least one Vault module for this purpose. Sepa-ra�ng the management and the storage has two essen�al benefits and one concern. On one hand, this way theKey Manager can use mul�ple key Vaults that may use different standards and hardware, which makes the datasepara�on clearer and results in be�er security. On the other hand, the management part can be generalized,and making the management smarter depends on the data and its behavior (keys), not on how it is stored. Theconcern is the performance as we add another layer to the key query process, but we think the overhead will besmall.
3.2.4.2 Keys
The keys can come from different sources, such as being generated by the system itself (for example keys usedfor authen�ca�on) or received from another party, such as keys used for encryp�on received from the quantumkey distribu�on (QKD) device.
The keys are stored alongside some accompanying informa�on, which may include the following:

• unique iden�fier
• source
• size
• �me of the crea�on
• other proper�es

These can be used, for example, to search for the correct keys for a specific use case or for key refreshment.
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3.2.4.3 Key refreshment
Key refreshment is the process of upda�ng or replacing the keys periodically or when needed to enhance security.
Besides providing storage (with the Vault module), the Key-Manager module implements different key refresh-ment strategies according to the sources and types of the keys. Apart from working with fixed expira�on dates, itcan observe the usage of different keys and ini�ate (re)create keys based on the behavior. The intent of the KeyManager is passed to the Key Agreement module as an internal Message via the Controller and the Encryptor.In case of QKD keys, the refreshment process also relies on the Key-Update module, which provides a unifiedinterface for different sources of fresh keys, such as key genera�on or reques�ng a provably secure quantum keyfrom the QKD device.
3.3 Communica�on between modules
To keep it as simple as possible, only two types of objects can carry data between the different modules. One isthe Message, which can be maintenance, raw, or encrypted; and the other is KeyInfo, which contains differenttypes of keys and/or informa�on about them. As men�oned above, the modules behave asynchronously, whichimplies we use queues for data transfer. The transferred data, mostly the Message objects, are in raw data format,but depending on the selected (based on performance and ease of use) queueing library may be RPC packages.
3.4 Implementa�on and deployment
We use C++ as the main development language for the modules; however, the development of each moduleis independent, and the language can be changed later separately with minimal cost. In the module hierarchy(see arrows in Figure 3.1 and 3.2), if a parent-child module realized using different programming languages, then,naturally, we need to implement a simple control module that implements the (let’s say) C++ interface of theparent. This is necessary due to the way our system deploys its modules as different components.
An applica�on using our solu�on deploys the system as follows:

1. Controller starts and reads its configura�on (from file).
2. Based on the configura�on, the Controller ini�ates the Vaults, Tunnels, Facades, Key Manager, and Encryp-tor modules.
3. Controller passes the Vaults to the Key Manager.
4. Controller starts and observes (status only) Tunnels, Facades, Key Manager, and the Encryptor.
5. Controller starts to accept and route Messages from the modules through queues.

3.5 Performance
Our goal is to provide an applica�on for real-�me communica�on, which, depending on the chosen encryp�onform, can help to securely transfer text, sound, video, and general data. The cri�cal factor regarding performanceshould be the selected cryptographic protocols and the availability of the keys, not the communica�on betweenthe modules. We intend to choose solu�ons where the cost of the data transfer makes possible real-�me videotransfer.

4 Security analysis
This sec�on is devoted to summarizing the main assump�ons and the security requirements the system has tosa�sfy, focusing on both the communica�on and cryptography point of view.
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4.1 Communica�on building blocks
Note that the proposed encryptor so�ware is supposed to be in the applica�on layer according to the ETSI 014standard, hence we have some trivial assump�ons related to the communica�on between the layers. The en-cryptor has three kinds of communica�on channels, see Figure 4.1:

• Channel between the encryptor and the respec�ve KM
• Channel to other encryptors
• Channel to a user

Figure 4.1: An example of a point-to-point QKD network

4.1.1 Channel between the encryptor and the KM
We assume that every communica�on between the encryptors and the KMs are using the ETSI 014 standard,hence it is an authen�cated secure channel. Form the security point of view, this is the most convenient link,even the adversary can’t eavesdrop the sent messages.
4.1.2 Channel between encryptors
Since the ETSI 014 assumes nothing about any links in the applica�on layer, we also have no assump�on. Hence,this is an unauthen�cated open channel, the adversary is able to eavesdrop and/or modify any messages. This isthe most challenging link, the encryptor has to solve the authen�ca�on and encryp�on as well.
Let the sender be called Alice and the receiver be called Bob as usual.
4.1.3 Channel between the encryptor and the user
This channel is supposed to be a standard API, hence can be protected by standard methods, like HTTPS/TLS.
4.2 Cryptography building blocks
The encryptor so�ware has the following main crypto building blocks:

• Key-genera�on
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• Authen�ca�on
• Key-agreement
• Encryp�on

Let us note, that, as a consequence of the modular architecture of the proposed encryptor so�ware, our goal isnot choose any arbitrary fixed algorithms for these building blocks. The purpose of this report is to summarizethe requirements the par�cular blocks has to sa�sfy. In the following sec�ons we give a detailed descrip�on ofthese primi�ves.
4.2.1 Key-genera�on
The proposed encryptor uses various keys for different purposes. Within this sec�on, we summarize the requiredfunc�onali�es for each of them.
4.2.1.1 QKD keys
We have a preliminary assump�on, namely the existence of a QKD algorithm Genqkd genera�ng (quantum)keysin the following way:

• the key-generation Genqkd takes the security parameter 1n and a length func�on l(.) as inputs andoutputs a pair (kqkd, IDkqkd
) ∈ {0, 1}n × {0, 1}l(n) of a QKD-key and its iden�fier.

4.2.1.2 Long-term sta�c keys
We assume that both par�es have some long-term sta�c keypairs generated by the key genera�on step of a par�c-ular public-key scheme Πpub = (Genpub, ∗), i.e., Alice generates (skA, pkA) = Genpub(1n) and Bob generates
(skB , pkB) = Genpub(1n).
4.2.1.3 Authen�ca�on keys
We assume that both par�cipants generate their authen�ca�on key pairs using the key genera�on part of theAuthen�ca�on 4.2.2, i.e. it outputs key-pairs (pkauthA , skauthA ) and (pkauthB , skauthB ) for Alice and Bob, resp.
4.2.1.4 Symmetric keys
The symmetric keys are temporary keys generated for every new session by a pair of par�es (i.e. Alice and Bob).In fact, these keys are the outputs of the Key-agreement step 4.2.3
4.2.2 Authen�ca�on
This part aims to establish mutual authen�ca�on between Alice and Bob using a long-term public key, secret keypairs, and some fresh randomness.
Formally, the authen�ca�on Πauth consists of three PPT algorithms:

• thekey generationGenauth takes the security parameter 1n as input/outputs key-pairs (pkauthA , skauthA )and (pkauthB , skauthB ) for Alice and Bob, respec�vely.
• the authentication Auth takes the secret keys of skauthA , skauthB and some random strings
rA, rB ∈R {0, 1}n and outputs a pair of tags (tA, tB) where tA = Authskauth

A
(rA, rB , pk

auth
B ) and

tB = Authskauth
B

(rA, rB , pk
auth
A )

• the verificationV rfy takes a pair of tags (tA, tB), the strings rA, rB and the public keys pkauthA , pkauthBas inputs and outputs a bit with b = bA · bB = V rfypkauth
A

(tB , rA, rB) · V rfypkauth
B

(tA, rA, rB) with
bA(= bB) = 1 if the tag generated by Alice (Bob) is valid and 0 otherwise.

The algorithms (Genauth, Auth, V rfy) can be any arbitrary authen�ca�on scheme.
From now on, we assume that every communica�on of the following building blocks between Alice and Bob issent through an authen�cated channel.
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4.2.3 Key-agreement
The informal purpose of this block is to establish a common symmetric key between Alice and Bob by combining(one of) the par�cipants’ long-term keys and fresh randomness.
Formally, the key-agreement Πkagr is a pair of PPT algorithms:

• the key-generation Genkagr takes the security parameter 1n as input and outputs an ephemeral key
rA ∈R {0, 1}n for the sender Alice

• the key-agreementKagr takes the sta�c secret key skB of the receiver Bob and the ephemeral key rAand outputs a shared key kAB = Kagr(skB , rA)

The algorithms (Genkagr,Kagr) can be any arbitrary key-agreement scheme, like Diffie-Hellman or more prefer-ably some post-quantum solu�on.
4.2.4 Encryp�on
Informally, this is a variant of a symmetric key encryp�on scheme with a special key deriva�on func�on, such thatthe resul�ng key combines quantum and classical symmetric keys.
Formally, we let Enc and Dec be the encryp�on and the decrip�on algoritm of some symmetric key encryp�onscheme (like AES for example). Then the encryptor consists of three PPT algorithms:

• the key-generation Gen takes the security parameter 1n as input and outputs a public func�on mix :
{0, 1}n × {0, 1}n → {0, 1}n and the encryptor key k = mix(kqkd, kAB) where (kqkd, ∗) = Genqkd(1n)and kAB = Genkagr(1n)

• the encryption Enc takes the encryptor key k, the iden�fier IDkqkd
and a message m as input andoutputs the ciphertext c = (IDkqkd

, Enck(m))

• the decryption Dec takes, the iden�fier IDkqkd
and a ciphertext c as input, then first generates theencryptor key k related to IDkqkd

and outputs a message m = Deck(c)

4.3 Security requirements
4.3.1 Communica�on building blocks
From a communica�on point of view, it should be noted that the key delivery interface of ETSI standards relieson other communica�on protocols, such as HTTPS or TLS. The security of such applica�ons is therefore reducedto these communica�on protocols.
4.3.2 Key-genera�on
For various building blocks, we will use the celebrated random oracle model of Bellare and Rogaway [8], namelythese func�ons producing random outputs. The trivial and straigh�orward assump�on is that every key gener-a�on algorithm must be a random func�on. Such assump�ons are that all of Genqkd, Genpub, Genauth are arandom oracle.
4.3.3 Authen�ca�on
We use the BWM model of Blake-Wilson and Menezes [9] for the authen�ca�on. There are two main reasonsfor choosing this model: on the one hand, the proposed protocol should work in the public key se�ng ratherthan based on pre-shared symmetric keys. On the other hand, as a consequence of the modular design of theproposed protocol, the goal of this module is mutual authen�ca�on (i.e., there is no need for key exchange inthis module).
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4.3.4 Key-agreement
For the security of the key agreement, the requirement is that the common session keys between Alice and Bobmust be unpredictable and hidden from every (eavesdropping) adversary. Formally, we assume that the func�on
Kagr is a random oracle.
4.3.5 Encryp�on
Informally, here we have two main requirements: the used key must be secret and unpredictable, and the en-cryp�on must be secure.
Formally, we first assume that the func�on mix : {0, 1}n × {0, 1}n → {0, 1}n is a random oracle. Addi�onally,we assume the security against the strongest type of ac�ve adversary, i.e., Π sa�sfies indis�nguishability underan adap�ve chosen ciphertext a�ack (or IND-CCA2 shortly).
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Acronyms

BME Budapest University of Technology and Economics
DEM Data Encryp�on Middleware
ELTE Eötvös Loránd University
ETSI European Telecommunica�ons Standards Ins�tute
HTTPS Hypertext Transfer Protocol Secure
IEEE Ins�tute of Electrical and Electronics Engineers
IP Internet Protocol
IPsec Internet Protocol Security
KIFÜ Governmental Agency for IT Development (Hungarian NREN)
KMS Key Management Server
MACsec Media Access Control security
OSI Open Systems Interconnec�on model
PQ Post-quantum
QKD Quantum Key Distribu�on
SSH Secure Shell
TLS Transport Layer Security
Wigner RCP Wigner Research Centre for Physics
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