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Executive Summary

The QCIHungary project aims to develop a modularized software product, an encryptor, using the keys distributed
over a quantum communication infrastructure. This infrastructure is the primary goal of the QCIHungary and the
EuroQClI projects.

Quantum key distribution (QKD) is a method of secret key exchange between two distant participants, Alice and
Bob. The laws of quantum mechanics guarantee the security of the distributed keys, which makes eavesdropping
detectable. This is not possible over classical communication channels. The software product presented in this
deliverable is a separate software that sits on top of the QKD layer. Its purpose is to encrypt messages (and decrypt
them later) with additional keys generated using post-quantum cryptographic algorithms. To enhance security,
our software product establishes an authenticated (classical) channel between the sender and the receiver of the
(encrypted) message.

Our encryptor software can interact with various standard security services, for example, MACSec, IPsec, TLS,
etc., which sits between the QKD layer and an arbitrary application layer, see Figure[2.1] The modularized fashion
of the encryptor makes it possible to extend further the list of the available services above for later use.

The modules of the encryptor work together asynchronously in a producer-consumer fashion, which keeps the
complexity minimal and makes it easy to integrate existing software libraries of tools. Our encryptor consists
of five modules (Figure [3.1). The central part is the Controller, which orchestrates other modules and message
routing. The Encryptor module encrypts (and decrypts) messages, and the Key-Manager provides keys for the
Encryptor and information of the Controller. The Tunnel and Facade modules are simply connectors to the outside
world and implement the necessary interface for communication.

The Encryptor module is stateless (Figure[3.2) and consists of other modules. Based on the number of available
keys in the Key-Manager module and the type of Message, it either encrypts the Message or initiates the creation
of new keys via the Key-Agreement module. These new keys will be stored in one of the Vaults via the Key-
Manager.

The Key-Manager is responsible for storing private and public keys and their related information. The Controller
module can only request public information and receive messages from the Key-Manager. The Encryptor module
can query public and private keys from the Key-Manager.

We assume that the channel between our encryptor software and the key manager of each QKD device is authen-
ticated. We use the ETSI 014 standard [2] for requesting keys from the key managers. We have no assumptions
about the channels between the message sender and receiver.

After the authentication between two encryptor software, the message is sent through an authenticated channel.
Once the channel is authenticated, any (post-quantum) key exchange happens through this channel. However,
the key delivery interface of ETSI 014 standard relies on other communication protocols.

In this document, we present a modularized encryptor software solution design that uses QKD keys in combi-
nation with post-quantum keys to establish secure message transfer between Alice and Bob. We describe the
environment and describe each module of the encryptor. Finally, we analyze the security of each module and
discuss the assumptions that we make during the development of the software.

Deliverable D7.1
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1 Introduction

The QCIHungary project aims to establish the foundations of a national quantum communication infrastructure.
The present deliverable is the first product of the work package WP7 "Software stack over a quantum communi-
cation channel”, which aims to develop a software product using the keys distributed over the infrastructure.

Quantum communication is based on Quantum key distribution (QKD), which allows two participants to exchange
a secret key using a quantum communication channel. The security of QKD relies on the hypothesis that the laws
of quantum mechanics bind the information that an eavesdropper might acquire on the key. The eavesdropper
must interact with the quantum system to learn something about the key. This will inevitably disturb the quantum
states that the two participants use, which can be detected.

Since the secret key is ultimately known by the two participants only, the security of the standardized classical
algorithms is somewhat enhanced since it relies on the secret key. We aim to exploit this by creating a modularized
software package that uses the secret key distributed by QKD. In this work, we assume that the security of a QKD
protocol is sound and the communication channels are authenticated between the QKD devices and their key
managers. We also assume that the keys are securely stored in the QKD devices (and in the key managers),
meaning only the two participants can know the secret keys.

There are commercially available encryptor solutions for similar purposes, e.g. Adva, Thales, and Toshiba, but our
software solution could expand these on three points.

1. Adding PQ layer. Most of the commercial solutionsE] only use the QKD keys and miss the opportunity to
enhance the security provided by the recently standardized post-quantum (PQ) key exchange algorithms.
In our system, the PQ key adds another encryption layer on the message in case the QKD protocol or the
infrastructure gets compromised.

2. Improved key management Based on the used technology, there are restrictions on the rate QKD key bytes
can be generated, which could create problems for some applications where the key generation should be
on-demand and fast, or the demanded keys are rather long. Our solution has an independent Key Manager
module that allows smart key management and simultaneous communication with various key storage
standards.

3. Flexibility Our software is a modularized middleware, which creates a software layer where devices from
different vendors and different infrastructures can be used together with minimal effort.

The encryptor software is designed in a modularized fashion. This document will define the modules, specify their
roles, and describe the communication between them without the exact interface specification. The encryptor
software is a middleware, so we will use the user and user application as synonyms as the outer interfaces not
intended to be used by a person directly.

The goal of this deliverable is to present the environment in which the software will be used (Section[2), and the
architecture (Section|[3). Finally, we discuss the security analysis of the software (Section[4).

"There are vendors (for example Nokia) providing solutions that are combining PQC and QKD.
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2  Environment

The goal of this work package is to develop a software system that enables applications to use standard security
services enhanced with modern, QKD-based key exchange. In this section, we enlist external entities with which
the developed software system interacts. We do not intend this list, nor the description of its items to be exhaus-
tive; rather, this section is meant to illustrate the expected requirements for the developed system and to give a
high-level view of the potential use cases of the system.

Application
|
L1 In-flight L2 MACsec IPsec L3 IPsec L4 TLS, SSH,
(HW) |encryption| (ETH) (tunnel mode)| (IP) | (transport mode) | (TCP, UDP, etc.) etc.

v

Data Encryption Middleware

l Data Encryption Subsystem

Key Distribution Subsystem (QKD HW)

Figure 2.1: The system environment in which our encryptor software (Data Encryption Middleware) is located.

Figure[2.1depicts the system environment, with the external software components (including network protocols)
with which the Data Encryption Subsystem must interact. Arrows show dependencies between the components
from the point of view of an application requiring a secure point-to-point communication channel.

The encryptor software - called Data Encryption Middleware (DEM) in the figure - can be considered a middle-
ware between selected security protocols and the QKD-based Key Distribution Subsystem (KDS).

In the figure, our partitioning of the components is conceptual rather than physical. For example, a thin imple-
mentation of the Encryption Subsystem may consist strictly of the DEM, making the application responsible for
instantiating the protected communication channel and the KDS driver and wiring them with the middleware.
Alternatively, another Encryption Subsystem implementation may include the mechanism for instantiating and
wiring together the DEM, the communication channel, and the KDS driver. We detail the proposed system archi-
tecture in Section[3]

WP2 Deliverable 2.1 lists IPsec, MACsec, and in-flight (also known as in-line) encryptor types (security protocols)
that the Encryption Subsystem should provide. These protocols - described below in more detail - add security
features (e.g. PDU encryption) to OSI networking layers. Their standard implementations usually use classical key
exchange protocols (e.g. Diffie-Hellman protocol, in the case of IPsec). In contrast, Deliverable 2.1 specifies that
their implementations in the Encryption Subsystem must use the KDS for key exchange.

WP2 Deliverable 2.1 does not expect changes in other features of the security protocols, such as encryption or
authentication. On the other hand, it may be practical for the Encryption Subsystem to support or incorporate
such security methods as well in order to enable secure communication over other insecure protocols (e.g. TCP).

KDS is the physical system implementing QKD and is responsible for generating and exchanging keys. DEM must
be designed to support accepting keys from various drivers (adapters) of QKD hardware. The European Telecom-
munications Standards Institute (ETSI) has developed a standard for a key delivery application programming inter-
face (API), the ETSI GS QKD 014 standard, for requesting a secret key from the QKD hardware. Most commercially
available QKD hardware implements this standard; therefore, our software also uses it.

In the following, we describe our understanding of the encryption protocols listed in WP2 Deliverable 2.1. and
propose ways to integrate them with the KDS.

2.1 |IPsec

IPsec provides data integrity, authentication, encryption, and more for Layer 3 protocols and above [3]. IPsec can
be used in two modes [4]. In transport mode, only the payload is encrypted and authenticated. In tunnel mode

Deliverable D7.1
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(used e.g. for creating VPNs), the entire IP packet is encrypted and authenticated and then encapsulated into
a new IP header. IPsec has several robust, open-source implementations, including LibreSwan, OpenSwan, and
StrongSwan (all derivatives of the now-defunct FreeSwan project). IPsec allows custom key exchange methods,
and we discuss this next.

Architecture

ESP AH
Protocol Protocol
| !
Encryption Combined Integrity protection
algorithm algorithm algorithm

> <
IKE
Protocol

Figure 2.2: “Roadmap” of IPsec standards, based on RFC 6071 []

Figure[2.2]depicts the standards specifying IPsec and their dependencies. ESP and AH implement security features,
while Key Management is responsible for key exchange mechanisms (algorithms, authentication, etc.). RFC 2408
(historic) specified a protocol for Key Management, called ISAKMP. ISAKMP allowed users to use their own key
exchange protocols, although RFC 2409 (obsolate) also described the IKEv1 protocol for key exchange purposes.
RFC 7296 [5] describes IKEv2, the current standard both for management of security associations and for key
exchange, replacing both ISAKMP and IKEv1. IKEv2 has two phases. In the first phase, the hosts establish a secure
channel using X.509 PKI certificates or PSKs to authenticate each other. In the second phase, security association
management messages can be exchanged.

In this report, we do not discuss how DEM should interact with concrete implementations of IPsec, but as an
example, user-generated keys can be passed to StrongSwan by setting up the /etc/ipsec.conf configuration
file and including the PSK as plaintext in /etc/ipsec.secret before the secure link is initialized.

Based on this, IPsec provides at least two use cases for DEM:

1. Manual keying. DEM can act as the key exchange protocol for a configurable IPsec protocol (such as ISAKMP,
in the case of legacy systems). In this case, the keys provided by the KDS are used for security services over
IP PDUs in AH and ESP. Two separate keys should be generated: one for authentication and one for data
encryption purposes.

2. Automatic keying. An IKEv2 daemon can act as the key exchange protocol, while DEM can provide the
authentication PSKs for IKEv2. Here, the KDS-generated key is used in the first phase of IKE, namely as the
PSK used in creating the secure channel. In this case, the QKD-based KDS is only used for sharing PSKs,
while the actual key exchange (generating the keys that are securing the channel) is performed by IKE.

2.2 MACsec

MACsec provides data integrity, authentication, encryption, and more (see IEEE 802.1AE [8]) for all protocols
above Layer 2 (Ethernet), including ARP and DHCP. The MACsec header wraps the payload of an Ethernet frame.
Since MACsec also encrypts the IP header, it cannot operate between routers, only between hosts in the same
LAN. At the time of writing, the only robust, open-source MACsec implementation is embedded in the Linux
kernel.

MACsec allows custom key exchange methods, and we discuss this next.

As specified in IEEE 802.1AE, MACsec is only responsible for the above security services, while the key exchange is
handled by the MACsec Key Agreement (MKA) protocol, described in IEEE 802.1X. In the MKA, the user supplies
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a PSK (a pair of two keys called CAK and CKN) to both hosts. The hosts authenticate each other and share the key
for encrypting the actual traffic (SAK). As part of the process, one of them generates the SAK and then uses a key
exchange protocol (involving the PSK) to share this key with the other host. The MACsec security services then
use this SAK.

Host Switch
encrypted
traffic

kernel

configures traffic
wpa_supplicant MACsec
Pa_supp port

port
configures 802.1X/MKA

NetworkManager

Figure 2.3: MACsec in Linux

Figure[2.3]depicts the MACsec architecture implemented in Linux.

MACsec (IEEE 802.1AE, without MKA) is implemented inside the Linux kernel and can be accessed using the
iproute2 tool. Using this interface, one can create a MACsec link directly and supply the encryption/decryption
keys manually (e.g., using the command line). However, the manual explicitly recommends against this:

This tool is thus mostly for debugging and testing, or in combination with a user-space application
that reconfigures the keys. It is wrong to just configure the keys statically and assume them to work
indefinitely. The suggested and standardized way for key management is 802.1X-2010, which is im-
plemented by wpa_supplicant.

The deceptively named wpa_supplicant implements MKA (as well as authentication protocols used by high-
level encryptors such as WPA2). It performs the MKA and then instructs the kernel to set up the MACsec link. The
PSK (CKA and CKN) for the MKA can be provided in its configuration file (wpa_supplicant. conf).

Finally, most Linux distributions also include the NetworkManager service unit, which provides a high-level in-
terface to create connections. This tool can also set up MACsec with MKA, using the PSK (CKA and CKN) provided
by the user (e.g., on the command line, using nmc11i). Internally, it relies on wpa_supplicant.

Based on this, MACsec provides at least two use cases for DEM:

1. Direct keying. DEM can act as the key exchange protocol for MACsec. In this case, the keys provided by the
KDS are used directly for MACsec security services in the Linux kernel.

2. MKA. An MKA agent (e.g. wpa_supplicant, NetworkManager) can act as the key exchange protocol for
MACsec while DEM can provide the authentication PSKs for MKA. Here, the KDS-generated key is used for
generating SAKs and exchanging SAKs between hosts. In this case, the QKD-based KDS is only used for
sharing PSKs, while the actual key exchange (generating the keys that are actually securing the channel) is
performed by the MKA.

2.3 In-flight

In-flight encryption provides security below the L2 layer. Implementations often promise additional security fea-
tures, such as protection against traffic analysis. It is common in optical networks, as these are primarily used for
high-distance connections, where such security features are relevant.

In-flight encryption encrypts the Ethernet frame itself that includes network interface identifiers (MAC addresses).
This means that these PDUs are usually not transferred between Ethernet-capable software or hardware devices
(e.g. NICs, switches), instead, the secured link is supposed to lay between special-purpose devices handling en-
crypted PDUs.

Deliverable D7.1
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As in-flight encryption is - by definition - outside the traditional network layers, there are no commonly accepted
standards. Instead, each vendor provides its own proprietary solutions, which must be evaluated on a case-by-
case basis.

Nonetheless, we expect similar options to those of IPsec and MACsec. For example, Wavelogic Encryption by
Ciena performs first a PSK-based based ITU X.509 based authentication, which is followed by data encryption.
Here, DEM may be utilized to deliver KDS-generated PSKs to the device.

In this report, we do not discuss how DEM should interact with concrete implementations of in-flight encryption.
Still, it seems clear that DEM must be designed to support transmitting keys to various drivers (adapters) of in-
flight encryptor hardware.

3 Architecture

With the emergence of quantum computers (or at least their promise) and Shor’s algorithm [7], a good part of
our well-established cryptographic tools become obsolete. However, we don’t want to reestablish a completely
new system but use solutions that do not compromise security. The relatively simple solution to accomplish this
is modularization, where the architecture enables to apply widely used IT security standards and tools. Further-
more, the additional work to create interfaces pays off in flexibility, which is very important in a research project
(like EuroQCl) where multiple groups work parallel on similar solutions.

3.1 Aim

Our goal in this section is to define the architecture of an application that can be employed on various OSI layers
(based on the implemented connector moduleﬂ and can work with existing solutions (like post-quantum SSL,
key storage, etc.). To achieve this, we outline modules and interfaces between them where each module has
a distinctive role, while the interfaces are as simple as possible. Here, the modules can be seen as active enti-
ties asynchronously working together in a producer-consumer fashion, which keeps the complexity minimal and
makes easy to create envelop modules for integrating existing software libraries or tools.

3.2 Modules

The proposed architecture consists of several modules (see Figure [3.1) which can be organized based on their
connections and roles. In the middle, the Controller module is responsible for orchestrating other modules and
for message routing (including routing to Encryptor). The Tunnel and Facade components are the connectors and
implement the interfaces that communicate with the outside. The stateless Encryptor encrypts messages, while
the Key-Manager provides keys for the Encryptor and information for the Controller.

3.2.1 Controller

The Controller is the core module of the architecture, and when it starts it

e reads a configurational object and, based on that
o starts the other module§]
e checks the state of the system and

e commences to route the messages between the communication modules and the Encryptor.

Note: The Controller is a module and not provides a regular application interface; instead, the module itself should
be used or enveloped in an actual application.

2In the case of the Application Layer, the software can behave like a VPN client, providing a socket or network interface as a network
tunnel.

3The Controller starts the listed submodules like Vaults or Authonticators too. These modules are passed to their logical parent during the
initialization process.
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Figure 3.1: Modules (green - unique, orange - several instances supported)

3.2.2 Communcation - Facade and Tunnel

A Facade transfers messages between the Controller and the user, which usually, but not necessarily¥] means the
Facade provides a standard socket or network interface that the user application can use.

A Tunnel provides a network tunnel for communication with other Controllers; in most cases, it connects to a
socket or network interface.

The Controller can handle multiple instances of Facades and Tunnels. Still, from the viewpoint of behavior, a
Tunnel-Controller-Facade trio is like a pipeline with the Controller in the middle, responsible for securing the
messages.

3.2.3 Encryptor

The Encryptor module encapsulates and organizes other cryptographic submodules (see Figure to provide
a stateless module that can secure messages. Based on the Message (maintenance, raw or encrypted) and the
available keys in the Key-Manager, the Encryptor can decide what to do with the Message. For raw and encrypted
messages, if there is no key available for encryption or decryption, then the module can initiate the creation of
new keys via the Key-Agreement module. The new key will be created by one of the Key-Update modules based
on what type of key was requested; and will be stored in one of the Vaults via the Key-Manager. An authenticator
is responsible for authenticating messages based on preshared data (stored in KM), which is crucial, for example,
if the key-update process require multiple authenticated data transfer.

It's important to note that the structure of the Encryptor module enables us to use standard encryption tools.
For example, a new key agreement or authentication protocol can be added to the system by enveloping it in a
Key-Agreement or Authentication module. Furthermore, if there is a standard, wisely used package like SSL, we
can encapsulate it in an encryptor and use it in our system without changing the other modules.

3.2.4 Key-Manager

The Key-Manager is responsible for storing private (symmetric and asymmetric) and public keys and their related
information. As a module, it has two different interfaces. Via the interface between the Controller and the Key-
Manager

e the Controller can only query public information,

e the Key-Manager can transfer messages to the Controller, which can be addressed to the user (answer to
user query) or to the Tunnel.

4In case, the Controller is part of some special application or network infrastructure, the Facade can play a more specific connector role.
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Figure 3.2: Encryptor modules

The interface between the Encryptor and the Controller is unidirectional; the Encryptor can

e query public and private keys,

o store and update keys.

As the Encryptor module is stateless, and the Controller has no control over the encryption process, the Key-
Manager contains all the security-related data in Vault modules.

3.2.4.1 Vault

The Key Manager does not provide storage; instead, it uses at least one Vault module for this purpose. Sepa-
rating the management and the storage has two essential benefits and one concern. On one hand, this way the
Key Manager can use multiple key Vaults that may use different standards and hardware, which makes the data
separation clearer and results in better security. On the other hand, the management part can be generalized,
and making the management smarter depends on the data and its behavior (keys), not on how it is stored. The
concern is the performance as we add another layer to the key query process, but we think the overhead will be
small.

3.2.4.2 Keys

The keys can come from different sources, such as being generated by the system itself (for example keys used
for authentication) or received from another party, such as keys used for encryption received from the quantum
key distribution (QKD) device.

The keys are stored alongside some accompanying information, which may include the following:
e unique identifier
e source
® size
e time of the creation

e other properties

These can be used, for example, to search for the correct keys for a specific use case or for key refreshment.

Deliverable D7.1
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3.2.4.3 Key refreshment

Key refreshment is the process of updating or replacing the keys periodically or when needed to enhance security.

Besides providing storage (with the Vault module), the Key-Manager module implements different key refresh-
ment strategies according to the sources and types of the keys. Apart from working with fixed expiration dates, it
can observe the usage of different keys and initiate (re)create keys based on the behavior. The intent of the Key
Manager is passed to the Key Agreement module as an internal Message via the Controller and the Encryptor.
In case of QKD keys, the refreshment process also relies on the Key-Update module, which provides a unified
interface for different sources of fresh keys, such as key generation or requesting a provably secure quantum key
from the QKD device.

3.3 Communication between modules

To keep it as simple as possible, only two types of objects can carry data between the different modules. One is
the Message, which can be maintenance, raw, or encrypted; and the other is Keylnfo, which contains different
types of keys and/or information about them. As mentioned above, the modules behave asynchronously, which
implies we use queues for data transfer. The transferred data, mostly the Message objects, are in raw data format,
but depending on the selected (based on performance and ease of use) queueing library may be RPC packages.

3.4 Implementation and deployment

We use C++ as the main development language for the modules; however, the development of each module
is independent, and the language can be changed later separately with minimal cost. In the module hierarchy
(see arrows in Figure[3.1and[3.2), if a parent-child module realized using different programming languages, then,
naturally, we need to implement a simple control module that implements the (let’s say) C++ interface of the
parent. This is necessary due to the way our system deploys its modules as different components.

An application using our solution deploys the system as follows:

1. Controller starts and reads its configuration (from file).

2. Based on the configuration, the Controller initiates the Vaults, Tunnels, Facades, Key Manager, and Encryp-
tor modules.

3. Controller passes the Vaults to the Key Manager.
4. Controller starts and observes (status only) Tunnels, Facades, Key Manager, and the Encryptor.

5. Controller starts to accept and route Messages from the modules through queues.

3.5 Performance

Our goal is to provide an application for real-time communication, which, depending on the chosen encryption
form, can help to securely transfer text, sound, video, and general data. The critical factor regarding performance
should be the selected cryptographic protocols and the availability of the keys, not the communication between
the modules. We intend to choose solutions where the cost of the data transfer makes possible real-time video
transfer.

4 Security analysis

This section is devoted to summarizing the main assumptions and the security requirements the system has to
satisfy, focusing on both the communication and cryptography point of view.

Deliverable D7.1
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4.1  Communication building blocks

Note that the proposed encryptor software is supposed to be in the application layer according to the ETSI 014
standard, hence we have some trivial assumptions related to the communication between the layers. The en-
cryptor has three kinds of communication channels, see Figure[4.1

e Channel between the encryptor and the respective KM
e Channel to other encryptors

e Channel to a user

Application Layer

[ E E |

ETSI 014 ETSI 014

Key Management Layer

-+ -

Quantum Layer
- - h
— quantum channel —

Node A Node B

-

Figure 4.1: An example of a point-to-point QKD network

4.1.1 Channel between the encryptor and the KM

We assume that every communication between the encryptors and the KMs are using the ETSI 014 standard,
hence it is an authenticated secure channel. Form the security point of view, this is the most convenient link,
even the adversary can’t eavesdrop the sent messages.

4.1.2 Channel between encryptors

Since the ETSI 014 assumes nothing about any links in the application layer, we also have no assumption. Hence,
this is an unauthenticated open channel, the adversary is able to eavesdrop and/or modify any messages. This is
the most challenging link, the encryptor has to solve the authentication and encryption as well.

Let the sender be called Alice and the receiver be called Bob as usual.

4.1.3 Channel between the encryptor and the user

This channel is supposed to be a standard API, hence can be protected by standard methods, like HTTPS/TLS.

4.2 Cryptography building blocks

The encryptor software has the following main crypto building blocks:

e Key-generation

. 10
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o Authentication
o Key-agreement
e Encryption

Let us note, that, as a consequence of the modular architecture of the proposed encryptor software, our goal is
not choose any arbitrary fixed algorithms for these building blocks. The purpose of this report is to summarize
the requirements the particular blocks has to satisfy. In the following sections we give a detailed description of
these primitives.

4.2.1 Key-generation

The proposed encryptor uses various keys for different purposes. Within this section, we summarize the required
functionalities for each of them.

4.2.1.1 QKD keys

We have a preliminary assumption, namely the existence of a QKD algorithm Gen?*? generating (quantum)keys
in the following way:

e the key-generation Gen?*? takes the security parameter 1" and a length function (.) as inputs and
outputs a pair (kgkq, I Dy € {0,1}™ x {0,1}™) of a QKD-key and its identifier.

qkd)
4.2.1.2 Long-term static keys

We assume that both parties have some long-term static keypairs generated by the key generation step of a partic-
ular public-key scheme ITP%* = (GenP"? ), i.e., Alice generates (ska,pka) = GenP“*(1™) and Bob generates
(skp,pkp) = GenPub(1™).

4.21.3 Authentication keys

We assume that both participants generate their authentication key pairs using the key generation part of the
Authentication[4.2.2} i.e. it outputs key-pairs (pk4*", sk%*t") and (pk&t", sk%*") for Alice and Bob, resp.

4.2.1.4 Symmetric keys

The symmetric keys are temporary keys generated for every new session by a pair of parties (i.e. Alice and Bob).
In fact, these keys are the outputs of the Key-agreement step[4.2.3|

4.2.2 Authentication

This part aims to establish mutual authentication between Alice and Bob using a long-term public key, secret key
pairs, and some fresh randomness.

Formally, the authentication II*“*" consists of three PPT algorithms:

e thekey generation Gen®!" takesthe security parameter 1" asinput/outputs key-pairs (pk%ut" | skauth)
and (pk%th, sk%*th) for Alice and Bob, respectively.

e the authentication Auth takes the secret keys of sk%“" sk%!'" and some random strings

ra,rp €r {0,1}" and outputs a pair of tags (t4,t5) where t4 = Auth yaun (14,75, k") and
tp = Authsk%uth (TAv B, pkaAuth)

e theverification Vrfy takesa pairoftags (t4,t5), the strings 74, 75 and the public keys pk4*" | pk&th
as inputs and outputs a bit with b = b4 - bg = V?”fypkzuth(tB,TA,TB) . Vrfypk%m (ta,ra,rp) with
ba(= bp) = 1if the tag generated by Alice (Bob) is valid and 0 otherwise.

The algorithms (Gen“““’, Auth, Vr fy) can be any arbitrary authentication scheme.

From now on, we assume that every communication of the following building blocks between Alice and Bob is
sent through an authenticated channel.

1
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4.2.3 Key-agreement

The informal purpose of this block is to establish a common symmetric key between Alice and Bob by combining
(one of) the participants’ long-term keys and fresh randomness.

Formally, the key-agreement IT¥9" is a pair of PPT algorithms:

e the key-generation Genke97 takes the security parameter 1™ as input and outputs an ephemeral key
r4 €gr {0,1}™ for the sender Alice

o the key-agreement Kagr takes the static secret key skp of the receiver Bob and the ephemeral key r 4
and outputs a shared key kap = Kagr(skp,r4)

The algorithms (Gen*9" | K agr) can be any arbitrary key-agreement scheme, like Diffie-Hellman or more prefer-
ably some post-quantum solution.

4.2.4 Encryption

Informally, this is a variant of a symmetric key encryption scheme with a special key derivation function, such that
the resulting key combines quantum and classical symmetric keys.

Formally, we let Enc and Dec be the encryption and the decription algoritm of some symmetric key encryption
scheme (like AES for example). Then the encryptor consists of three PPT algorithms:

o the key-generation Gen takes the security parameter 1™ as input and outputs a public function mizx :
{0,1}" x {0,1}"™ — {0, 1}™ and the encryptor key k = miz(kqra, kap) where (kga, *) = Gen*4(1")
and kAB = Genkagr(ln)

e the encryption Enc takes the encryptor key k, the identifier /Dy, ,, and a message m as input and
outputs the ciphertext ¢ = (I Dy, ,, Enci(m))

qkd?

e the decryption Dec takes, the identifier /Dy, and a ciphertext c as input, then first generates the

encryptor key k related to I Dy, , , and outputs a message m = Decy(c)

4.3 Security requirements

4.3.1 Communication building blocks

From a communication point of view, it should be noted that the key delivery interface of ETSI standards relies
on other communication protocols, such as HTTPS or TLS. The security of such applications is therefore reduced
to these communication protocols.

4.3.2 Key-generation

For various building blocks, we will use the celebrated random oracle model of Bellare and Rogaway [8]], namely
these functions producing random outputs. The trivial and straightforward assumption is that every key gener-
ation algorithm must be a random function. Such assumptions are that all of Gen@4, GenP*®, Gen®“t" are a
random oracle.

4.3.3 Authentication

We use the BWM model of Blake-Wilson and Menezes [9] for the authentication. There are two main reasons
for choosing this model: on the one hand, the proposed protocol should work in the public key setting rather
than based on pre-shared symmetric keys. On the other hand, as a consequence of the modular design of the
proposed protocol, the goal of this module is mutual authentication (i.e., there is no need for key exchange in
this module).
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4.3.4 Key-agreement

For the security of the key agreement, the requirement is that the common session keys between Alice and Bob
must be unpredictable and hidden from every (eavesdropping) adversary. Formally, we assume that the function
Kagr is a random oracle.

4.3.5 Encryption

Informally, here we have two main requirements: the used key must be secret and unpredictable, and the en-
cryption must be secure.

Formally, we first assume that the function mix : {0,1}" x {0,1}"™ — {0, 1}"™ is a random oracle. Additionally,
we assume the security against the strongest type of active adversary, i.e., II satisfies indistinguishability under
an adaptive chosen ciphertext attack (or IND-CCA2 shortly).

1
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Acronyms

BME
DEM
ELTE
ETSI
HTTPS
IEEE
IP
IPsec
KIFU
KMS
MACsec
oSl
PQ
QKD
SSH
TLS

Wigner RCP

Budapest University of Technology and Economics
Data Encryption Middleware

E6tvos Lorand University

European Telecommunications Standards Institute
Hypertext Transfer Protocol Secure

Institute of Electrical and Electronics Engineers
Internet Protocol

Internet Protocol Security

Governmental Agency for IT Development (Hungarian NREN)
Key Management Server

Media Access Control security

Open Systems Interconnection model
Post-quantum

Quantum Key Distribution

Secure Shell

Transport Layer Security

Wigner Research Centre for Physics

14



Bibliography

[1] Sheila Frankel and Suresh Krishnan. IP Security (IPsec) and Internet Key Exchange (IKE) Document Roadmap.
RFC 6071, February 2011.

[2] Quantum Key Distribution (QKD); Protocol and data format of REST-based key delivery API. ETSI GS QKD 014,
2019.

[3] Karen Seo and Stephen Kent. Security Architecture for the Internet Protocol (Section 2.1,
Goals/Objectives/Requirements/Problem Description). RFC 4301, December 2005.

[4] StephenKent. IP Authentication Header (Section 3.1 Authentication Header Processing). RFC 4302, December
2005.

[5] Charlie Kaufman, Paul E. Hoffman, Yoav Nir, Pasi Eronen, and Tero Kivinen. Internet Key Exchange Protocol
Version 2 (IKEv2). RFC 7296, October 2014.

[6] IEEE Standard for Local and metropolitan area networks-Media Access Control (MAC) Security (Section 6.9,
Security services). IEEE Std 802.1AE-2018 (Revision of IEEE Std 802.1AE-2006), pages 1-239, 2018.

[7] Peter W. Shor. Polynominal time algorithms for discrete logarithms and factoring on a quantum computer. In
Algorithmic Number Theory, First International Symposium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceed-
ings, volume 877 of Lecture Notes in Computer Science, page 289, 1994.

[8] Mihir Bellare and Phillip Rogaway. Random oracles are practical: A paradigm for designing efficient protocols.
In Proceedings of the 1st ACM Conference on Computer and Communications Security, CCS '93, page 62-73,
1993.

[9] Simon Blake-Wilson and Alfred Menezes. Entity authentication and authenticated key transport protocols
employing asymmetric techniques. In Security Protocols Workshop, 1997.

15



	Introduction
	Environment
	IPsec
	MACsec
	In-flight

	Architecture
	Aim
	Modules
	Controller
	Communcation - Facade and Tunnel
	Encryptor
	Key-Manager

	Communication between modules
	Implementation and deployment
	Performance

	Security analysis
	Communication building blocks
	Channel between the encryptor and the KM
	Channel between encryptors
	Channel between the encryptor and the user

	Cryptography building blocks
	Key-generation
	Authentication
	Key-agreement
	Encryption

	Security requirements
	Communication building blocks
	Key-generation
	Authentication
	Key-agreement
	Encryption



